
This is a special edition of an established title widely
used by colleges and universities throughout the world.
Pearson published this exclusive edition for the benefit
of students outside the United States and Canada. If you
purchased this book within the United States or Canada
you should be aware that it has been imported without
the approval of the Publisher or Author.

Pearson Global Edition

GlobAl
edITIon

GlobAl
edITIon

For these Global editions, the editorial team at Pearson has
collaborated with educators across the world to address a wide
range of subjects and requirements, equipping students with the best
possible learning tools. This Global edition preserves the cutting-edge
approach and pedagogy of the original, but also features alterations,
customization and adaptation from the north American version.

G
addis

T
H

IR
d

 ed
IT

Io
n

Starting o
ut w

ith Python
G

lo
b

A
l

ed
IT

Io
n

 Starting out
with Python
THIRd edITIon

Tony Gaddis

GADDIS_1292065508_mech.indd 1 24/07/14 5:25 pm

Thank you for purchasing a new copy of Starting Out with Python, Third Edition. Your textbook
includes one year of prepaid access to the book’s Companion Website. This prepaid subscription
provides you with full access to the following student support areas:

• VideoNotes
• Online Appendices
• Source Code

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Starting Out with Python, Third Edition, Companion Website for the �rst time, you
will need to register online using a computer with an Internet connection and a web browser. The
process takes just a couple of minutes and only needs to be completed once.

 1. Go to www.pearsonglobaleditions.com/gaddis
 2. Click on Companion Website.
 3. Click on the Register button.
 4. On the registration page, enter your student access code* found beneath the scratch-off panel.

Do not type the dashes. You can use lower- or uppercase.
 5. Follow the on-screen instructions. If you need help at any time during the online registration

process, simply click the Need Help? icon.
 6. Once your personal Login Name and Password are con�rmed, you can begin using the Starting

Out with Python Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any time
at www.pearsonglobaleditions.com/gaddis by providing your Login Name and Password when
prompted.

*Important: The access code can only be used once. This subscription is valid for one year upon activation and is not
transferable. If this access code has already been revealed, it may no longer be valid.

ONLINE ACCESS

M00_GADD2734_03_SE_ACARD.indd Page 1 12/3/13 9:59 PM user-s138 ~/Desktop/Praveen/

GADDIS_1292065508_ifc.indd 1 7/25/14 6:13 PM

Python
Starting out with

t h i r D E D i t i o n

global EDition

Python®

A01_GADD5502_03_GE_FM.indd Page 1 29/07/14 7:49 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

A01_GADD5502_03_GE_FM.indd Page 2 29/07/14 7:49 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

Python

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Starting out with

Python®

t h i r D E D i t i o n

g l o b a l E D i t i o n

Tony Gaddis
Haywood Community College

Global Edition contributions by
Rashi Agarwal
UIET Kanpur

A01_GADD5502_03_GE_FM.indd Page 3 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Tony Gaddis to be identified as the author of this work have been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Starting Out With Python, 3rd edition, ISBN
978-0-13-358273-4, by Tony Gaddis, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the
prior written permission of the publisher or a license permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text
does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use
of such trademarks imply any affiliation with or endorsement of this book by such owners.

Credits and acknowledgments borrowed from other sources and reproduced, with permission, appear on the
appropriate page within the textbook.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 1292065508
ISBN 13: 978-1-29-206550-2

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Typeset in 9 Sabon LT Std by iEnergizer Aptara®, Inc.

Printed and bound by Ashford Digital.

The publisher’s policy is to use paper manufactured from sustainable forests.

Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Program Manager: Kayla Smith-Tarbox
Director of Marketing: Christy Lesko
Marketing Manager: Yezan Alayan
Marketing Assistant: Jon Bryant
Director of Production: Erin Gregg
Managing Editor: Scott Disanno
Senior Production Project Manager: Marilyn Lloyd
Head, Learning Asset Acquisitions, Global Edition:
Laura Dent
Acquisition Editor, Global Edition: Aditee Agarwal
Project Editor, Global Edition: Anuprova Dey
Chowdhuri

Manufacturing Buyer: Linda Sager
Art Director: Jayne Conte
Cover Designer: Bruce Kenselaar
Manager, Rights and Permissions: Timothy Nicholls
Text Permissions: Jenell Forschler
Cover Image: © nature photos /Shutterstock
Cover Designer: Lumina Datamatics Ltd.
Media Project Manager: Renata Butera
Full-Service Project Management: Jogender Taneja/
iEnergizer Aptara®, Inc.
Composition: iEnergizer Aptara®, Inc.
Cover Printer/Binder: Ashford Colour Press

A01_GADD5502_03_GE_FM.indd Page 4 31/07/14 5:34 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

5

Contents in a Glance

 Preface 11

Chapter 1 Introduction to Computers and Programming 19

Chapter 2 Input, Processing, and Output 49

Chapter 3 Decision Structures and Boolean Logic 99

Chapter 4 Repetition Structures 139

Chapter 5 Functions 183

Chapter 6 Files and Exceptions 253

Chapter 7 Lists and Tuples 309

Chapter 8 More About Strings 357

Chapter 9 Dictionaries and Sets 387

Chapter 10 Classes and Object-Oriented Programming 437

Chapter 11 Inheritance 499

Chapter 12 Recursion 525

Chapter 13 GUI Programming 545

Appendix A Installing Python 583

Appendix B Introduction to IDLE 587

Appendix C The ASCII Character Set 595

Appendix D Answers to Checkpoints 597

 Index 613

A01_GADD5502_03_GE_FM.indd Page 5 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

A01_GADD5502_03_GE_FM.indd Page 6 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

7

 Preface 11

 Chapter 1 Introduction to Computers and Programming 19
1.1 Introduction 19
1.2 Hardware and Software 20
1.3 How Computers Store Data 25
1.4 How a Program Works 30
1.5 Using Python 38

 Chapter 2 Input, Processing, and Output 49
2.1 Designing a Program 49
2.2 Input, Processing, and Output 53
2.3 Displaying Output with the print Function 54
2.4 Comments 57
2.5 Variables 58
2.6 Reading Input from the Keyboard 67
2.7 Performing Calculations 71
2.8 More About Data Output 83

 Chapter 3 Decision Structures and Boolean Logic 99
3.1 The if Statement 99
3.2 The if-else Statement 108
3.3 Comparing Strings 111
3.4 Nested Decision Structures and the if-elif-else Statement 115
3.5 Logical Operators 123
3.6 Boolean Variables 129

 Chapter 4 Repetition Structures 139
4.1 Introduction to Repetition Structures 139
4.2 The while Loop: A Condition-Controlled Loop 140
4.3 The for Loop: A Count-Controlled Loop 148
4.4 Calculating a Running Total 159
4.5 Sentinels 162
4.6 Input Validation Loops 165
4.7 Nested Loops 170

Contents

A01_GADD5502_03_GE_FM.indd Page 7 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

8 Contents

 Chapter 5 Functions 183
5.1 Introduction to Functions 183
5.2 Defining and Calling a Void Function 186
5.3 Designing a Program to Use Functions 191
5.4 Local Variables 197
5.5 Passing Arguments to Functions 199
5.6 Global Variables and Global Constants 209
5.7 Introduction to Value-Returning Functions:
 Generating Random Numbers 213
5.8 Writing Your Own Value-Returning Functions 224
5.9 The math Module 235
5.10 Storing Functions in Modules 238

 Chapter 6 Files and Exceptions 253
6.1 Introduction to File Input and Output 253
6.2 Using Loops to Process Files 270
6.3 Processing Records 277
6.4 Exceptions 290

 Chapter 7 Lists and Tuples 309
7.1 Sequences 309
7.2 Introduction to Lists 309
7.3 List Slicing 317
7.4 Finding Items in Lists with the in Operator 320
7.5 List Methods and Useful Built-in Functions 321
7.6 Copying Lists 328
7.7 Processing Lists 330
7.8 Two-Dimensional Lists 342
7.9 Tuples 346

 Chapter 8 More About Strings 357
8.1 Basic String Operations 357
8.2 String Slicing 365
8.3 Testing, Searching, and Manipulating Strings 369

 Chapter 9 Dictionaries and Sets 387
9.1 Dictionaries 387
9.2 Sets 410
9.3 Serializing Objects 422

 Chapter 10 Classes and Object-Oriented Programming 437
10.1 Procedural and Object-Oriented Programming 437
10.2 Classes 441
10.3 Working with Instances 458
10.4 Techniques for Designing Classes 480

 Chapter 11 Inheritance 499
11.1 Introduction to Inheritance 499
11.2 Polymorphism 514

A01_GADD5502_03_GE_FM.indd Page 8 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

 Contents 9

 Chapter 12 Recursion 525
12.1 Introduction to Recursion 525
12.2 Problem Solving with Recursion 528
12.3 Examples of Recursive Algorithms 532

 Chapter 13 GUI Programming 545
13.1 Graphical User Interfaces 545
13.2 Using the tkinter Module 547
13.3 Display Text with Label Widgets 550
13.4 Organizing Widgets with Frames 553
13.5 Button Widgets and Info Dialog Boxes 556
13.6 Getting Input with the Entry Widget 559
13.7 Using Labels as Output Fields 562
13.8 Radio Buttons and Check Buttons 570

 Appendix A Installing Python 583

 Appendix B Introduction to IDLE 587

 Appendix C The ASCII Character Set 595

 Appendix D Answers to Checkpoints 597

 Index 613

A01_GADD5502_03_GE_FM.indd Page 9 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

LOCATION OF VIDEONOTES IN THE TEXT
VideoNote

Chapter 1 Using Interactive Mode in IDLE, p. 41
 Performing Exercise 2, p. 46

Chapter 2 The print Function, p. 54
 Reading Input from the Keyboard, p. 67
 The Sales Prediction Problem, p. 95

Chapter 3 The if Statement, p. 99
 The if-else Statement, p. 108
 The Areas of Rectangles Problem, p. 133

Chapter 4 The while Loop, p. 140
 The for Loop, p. 148
 The Bug Collector Problem, p. 179

Chapter 5 Defining and Calling a function, p. 186
 Passing Arguments to a Function, p. 199
 Writing a Value-Returning Function, p. 224
 The Kilometer Converter Problem, p. 247
 The Feet to Inches Problem, p. 248

Chapter 6 Using Loops to Process Files, p. 270
 File Display, p. 306

Chapter 7 List Slicing, p. 317
 The Lottery Number Generator Problem, p. 352

Chapter 8 The Vowels and Consonants problem, p. 385

Chapter 9 Introduction to Dictionaries, p. 387
 Introduction to Sets, p. 410
 The CapitalQuiz Problem, p. 434

Chapter 10 Classes and Objects, p. 441
 The Pet class, p. 494

Chapter 11 The Person and Customer Classes, p. 523

Chapter 12 The Recursive Multiplication Problem, p. 542

Chapter 13 Creating a Simple GUI application, p. 550
 Responding to Button Clicks, p. 556
 The Name and Address Problem, p. 580

Appendix B Introduction to IDLE, p. 587

A01_GADD5502_03_GE_FM.indd Page 10 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

11

Welcome to Starting Out with Python, Third Edition. This book uses the Python language
to teach programming concepts and problem-solving skills, without assuming any previous
programming experience. With easy-to-understand examples, pseudocode, flowcharts, and
other tools, the student learns how to design the logic of programs and then implement
those programs using Python. This book is ideal for an introductory programming course
or a programming logic and design course using Python as the language.

As with all the books in the Starting Out With series, the hallmark of this text is its clear,
friendly, and easy-to-understand writing. In addition, it is rich in example programs that are
concise and practical. The programs in this book include short examples that highlight spe-
cific programming topics, as well as more involved examples that focus on problem solving.
Each chapter provides one or more case studies that provide step-by-step analysis of a spe-
cific problem and shows the student how to solve it.

Control Structures First, Then Classes
Python is a fully object-oriented programming language, but students do not have to under-
stand object-oriented concepts to start programming in Python. This text first introduces
the student to the fundamentals of data storage, input and output, control structures, func-
tions, sequences and lists, file I/O, and objects that are created from standard library classes.
Then the student learns to write classes, explores the topics of inheritance and polymor-
phism, and learns to write recursive functions. Finally, the student learns to develop simple
event-driven GUI applications.

Changes in the Third Edition
This book’s clear writing style remains the same as in the previous edition. However, many
improvements have been made, which are summarized here:

•	 In	 the	 previous	 editions,	 Chapter	 3	 introduced	 simple,	 void	 functions,	 and	 then	
Chapter 6 covered value-returning functions. In this edition, the two chapters have
been combined. Chapter 5: Functions covers simple void functions, value-returning
functions, and modules.

•	 Several	new	programming	problems	have	been	added.

Preface

A01_GADD5502_03_GE_FM.indd Page 11 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

12 Preface

•	 Numerous	examples	of	using	the	Python	shell	to	test	relational	operators	have	been	added	
to Chapter 3, Decision Structures.

•	 The	 book’s	 programs	 have	 been	 tested	with	 Python	 3.3.2,	 the	most	 recent	 version	 of	
Python at the time this edition was written.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter begins by giving a very concrete and easy-to-understand explanation of how
computers work, how data is stored and manipulated, and why we write programs in high-
level languages. An introduction to Python, interactive mode, script mode, and the IDLE
environment are also given.

Chapter 2: Input, Processing, and Output

This chapter introduces the program development cycle, variables, data types, and simple
programs that are written as sequence structures. The student learns to write simple programs
that read input from the keyboard, perform mathematical operations, and produce screen
output. Pseudocode and flowcharts are also introduced as tools for designing programs.

Chapter 3: Decision Structures and Boolean Logic

In this chapter the student learns about relational operators and Boolean expressions and is
shown how to control the flow of a program with decision structures. The if, if-else, and
if-elif-else statements are covered. Nested decision structures and logical operators are
also discussed.

Chapter 4: Repetition Structures

This chapter shows the student how to create repetition structures using the while loop and
for loop. Counters, accumulators, running totals, and sentinels are discussed, as well as
techniques for writing input validation loops.

Chapter 5: Functions

In this chapter the student first learns how to write and call void functions. The chapter
shows the benefits of using functions to modularize programs and discusses the top-down
design approach. Then, the student learns to pass arguments to functions. Common library
functions, such as those for generating random numbers, are discussed. After learning how
to call library functions and use their return value, the student learns to define and call his
or her own functions. Then the student learns how to use modules to organize functions.

Chapter 6: Files and Exceptions

This chapter introduces sequential file input and output. The student learns to read and
write large sets of data and store data as fields and records. The chapter concludes by dis-
cussing exceptions and shows the student how to write exception-handling code.

A01_GADD5502_03_GE_FM.indd Page 12 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

 Preface 13

Chapter 7: Lists and Tuples

This chapter introduces the student to the concept of a sequence in Python and explores the
use of two common Python sequences: lists and tuples. The student learns to use lists for
arraylike operations, such as storing objects in a list, iterating over a list, searching for items
in a list, and calculating the sum and average of items in a list. The chapter discusses slicing
and many of the list methods. One- and two-dimensional lists are covered.

Chapter 8: More About Strings

In this chapter the student learns to process strings at a detailed level. String slicing and
algorithms that step through the individual characters in a string are discussed, and several
built-in functions and string methods for character and text processing are introduced.

Chapter 9: Dictionaries and Sets

This chapter introduces the dictionary and set data structures. The student learns to store
data as key-value pairs in dictionaries, search for values, change existing values, add new
key-value pairs, and delete key-value pairs. The student learns to store values as unique ele-
ments in sets and perform common set operations such as union, intersection, difference,
and symmetric difference. The chapter concludes with a discussion of object serialization
and introduces the student to the Python pickle module.

Chapter 10: Classes and Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It covers the
fundamental concepts of classes and objects. Attributes, methods, encapsulation and data
hiding, __init__ functions (which are similar to constructors), accessors, and mutators
are discussed. The student learns how to model classes with UML and how to find the
classes in a particular problem.

Chapter 11: Inheritance

The study of classes continues in this chapter with the subjects of inheritance and polymor-
phism. The topics covered include superclasses, subclasses, how __init__ functions work
in inheritance, method overriding, and polymorphism.

Chapter 12: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recursive
calls is provided, and recursive applications are discussed. Recursive algorithms for many
tasks are presented, such as finding factorials, finding a greatest common denominator
(GCD), and summing a range of values in a list, and the classic Towers of Hanoi example
are presented.

Chapter 13: GUI Programming

This chapter discusses the basic aspects of designing a GUI application using the tkinter
module in Python. Fundamental widgets, such as labels, buttons, entry fields, radio buttons,
check buttons, and dialog boxes, are covered. The student also learns how events work in a
GUI application and how to write callback functions to handle events.

A01_GADD5502_03_GE_FM.indd Page 13 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

14 Preface

Appendix A: Installing Python

This appendix explains how to download and install the Python 3 interpreter.

Appendix B: Introduction to IDLE

This appendix gives an overview of the IDLE integrated development environment that
comes with Python.

Appendix C: The ASCII Character Set

As a reference, this appendix lists the ASCII character set.

Appendix D: Answers to Checkpoints

This appendix gives the answers to the Checkpoint questions that appear throughout the text.

Organization of the Text
The text teaches programming in a step-by-step manner. Each chapter covers a major set of
topics and builds knowledge as students progress through the book. Although the chapters
can be easily taught in their existing sequence, you do have some flexibility in the order that
you wish to cover them. Figure P-1 shows chapter dependencies. Each box represents a
chapter or a group of chapters. An arrow points from a chapter to the chapter that must be
covered before it.

Figure P-1 Chapter dependencies

Chapters 1-5
(Cover in Order)

Chapter 7
Lists and Tuples

Chapter 6
Files and Exceptions

Chapter 12
Recursion

Chapter 11
Inheritance

Chapter 13
GUI Programming

Chapter 8
More About Strings

Chapter 9
Dictionaries and Sets

Chapter 10
Classes and Object-

Oriented Programming

*The material on object
serialization in Chapters 9
and 10 uses exception handling.

A01_GADD5502_03_GE_FM.indd Page 14 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

 Preface 15

Features of the Text
Concept Each major section of the text starts with a concept statement.

Statements This statement concisely summarizes the main point of the
section.

Example Programs Each chapter has an abundant number of complete and partial
example programs, each designed to highlight the current topic.

In the Spotlight Each chapter has one or more In the Spotlight case studies that
Case Studies provide detailed, step-by-step analysis of problems and show the

student how to solve them.

VideoNotes Online videos developed specifically for this book are available for
viewing at www.pearsonglobaleditions.com/gaddis. Icons
appear throughout the text alerting the student to videos about
specific topics.

Notes Notes appear at several places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

Tips Tips advise the student on the best techniques for approaching
different programming problems.

Warnings Warnings caution students about programming techniques or
practices that can lead to malfunctioning programs or lost data.

Checkpoints Checkpoints are questions placed at intervals throughout each
chapter. They are designed to query the student’s knowledge
quickly after learning a new topic.

Review Questions Each chapter presents a thorough and diverse set of review ques-
tions and exercises. They include Multiple Choice, True/False,
Algorithm Workbench, and Short Answer.

Programming Each chapter offers a pool of programming exercises designed to
Exercises solidify the student’s knowledge of the topics currently being

studied.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items are
available on the Gaddis Series resource page at www.pearsonglobaleditions.com/gaddis

•	 The	source	code	for	each	example	program	in	the	book
•	 Access	to	the	book’s	companion	VideoNotes

VideoNote

A01_GADD5502_03_GE_FM.indd Page 15 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

16 Preface

Instructor Resources

The following supplements are available to qualified instructors only:

•	 Answers	to	all	of	the	Review	Questions
•	 Solutions	for	the	exercises
•	 PowerPoint	presentation	slides	for	each	chapter
•	 Test	bank

Visit the Pearson Education Instructor Resource Center (www.pearsonglobaleditions.
com/gaddis) or contact your local Pearson Education campus representative for information
on how to access them.

Acknowledgments
I would like to thank the following faculty reviewers for their insight, expertise, and
thoughtful recommendations:

Paul Amer
University of Delaware

James Atlas
University of Delaware

James Carrier
Guilford Technical Community
College

John Cavazos
University of Delaware

Barbara Goldner
North Seattle Community College

Paul Gruhn
Manchester Community College

Diane Innes
Sandhills Community College

Daniel Jinguji
North Seattle Community College

Gary Marrer
Glendale Community College

Keith Mehl
Chabot College

Vince Offenback
North Seattle Community College

Smiljana Petrovic
Iona College

Raymond Pettit
Abilene Christian University

Janet Renwick
University of Arkansas–Fort Smith

Tom Stokke
University of North Dakota

Karen Ughetta
Virginia Western Community College

Reviewers of Previous Editions

Desmond K. H. Chun
Chabot Community College

Bob Husson
Craven Community College

Shyamal Mitra
University of Texas at Austin

Ken Robol
Beaufort Community College

Eric Shaffer
University of Illinois at Urbana-
Champaign

Ann Ford Tyson
Florida State University

Linda F. Wilson
Texas Lutheran University

A01_GADD5502_03_GE_FM.indd Page 16 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

 Preface 17

I would like to thank my family for their love and support in all my many projects. I am
extremely fortunate to have Matt Goldstein as my editor. I am also fortunate to have Yez
Alayan as marketing manager and Kathryn Ferranti as marketing coordinator. They do a
great job getting my books out to the academic community. I work with a great production
team led by Marilyn Lloyd and Kayla Smith-Tarbox. Thanks to you all!

Pearson wishes to thank the following reviewers for their work on the Global Edition:

Somitra Sanadhya
IIIT Delhi

Shaligram Prajapat
Devi Ahilya University

About the Author
Tony Gaddis is the principal author of the Starting Out With series of textbooks. Tony has
nearly two decades of experience teaching computer science courses, primarily at Haywood
Community College. He is a highly acclaimed instructor who was previously selected as the
North Carolina Community College “Teacher of the Year” and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out With series includes introductory books covering C++, Java™, Microsoft®
Visual Basic®, Microsoft® C#®, Python®, Programming Logic and Design, Alice, and App
Inventor, all published by Pearson. More information about all these books can be found at
www.pearsonhighered.com/gaddisbooks.

A01_GADD5502_03_GE_FM.indd Page 17 31/07/14 5:34 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

A01_GADD5502_03_GE_FM.indd Page 18 29/07/14 7:50 AM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

19

1.1 Introduction
Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending email, and
participating in online classes. At work, people use computers to analyze data, make pre-
sentations, conduct business transactions, communicate with customers and coworkers,
control machines in manufacturing facilities, and do many other things. At home, people
use computers for tasks such as paying bills, shopping online, communicating with friends
and family, and playing computer games. And don’t forget that cell phones, iPods®, smart
phones, car navigation systems, and many other devices are computers too. The uses of
computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This
means that computers are not designed to do just one job, but to do any job that their pro-
grams tell them to do. A program is a set of instructions that a computer follows to perform
a task. For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two
commonly used programs.

Programs are commonly referred to as software. Software is essential to a computer because
it controls everything the computer does. All of the software that we use to make our com-
puters useful is created by individuals working as programmers or software developers. A
programmer, or software developer, is a person with the training and skills necessary to
design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers’ work used in business, medicine, gov-
ernment, law enforcement, agriculture, academics, entertainment, and many other fields.

This book introduces you to the fundamental concepts of computer programming using the
Python language. The Python language is a good choice for beginners because it is easy to learn

Introduction to Computers
and Programming1

TopIcs

 1.1 Introduction
 1.2 Hardware and Software
 1.3 How Computers Store Data

 1.4 How a Program Works
 1.5 Using Python

C
H

A
P

T
E

R

M01_GADD5502_03_GE_C01.indd Page 19 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

20 Chapter 1 Introduction to Computers and Programming

and programs can be written quickly using it. Python is also a powerful language, popular with
professional software developers. In fact, it is has been reported that Python is used by Google,
NASA, YouTube, various game companies, the New York Stock Exchange, and many others.

Before we begin exploring the concepts of programming, you need to understand a few
basic things about computers and how they work. This chapter will build a solid founda-
tion of knowledge that you will continually rely on as you study computer science. First,
we will discuss the physical components that computers are commonly made of. Next, we
will look at how computers store data and execute programs. Finally, we will get a quick
introduction to the software that you will use to write Python programs.

1.2 Hardware and software

concepT: The physical devices that a computer is made of are referred to as the
computer’s hardware. The programs that run on a computer are referred
to as software.

Hardware
The term hardware refers to all of the physical devices, or components, that a computer is made
of. A computer is not one single device, but a system of devices that all work together. Like the
different instruments in a symphony orchestra, each device in a computer plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing com-
ponents such as microprocessors, memory, disk drives, video displays, graphics cards, and
so on. Unless you already know a lot about computers, or at least have a friend that
does, understanding what these different components do might be challenging. As shown in
Figure 1-2, a typical computer system consists of the following major components:

• The central processing unit (CPU)
• Main memory
• Secondary storage devices

Figure 1-1 A word processing program and an image editing program

M01_GADD5502_03_GE_C01.indd Page 20 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

 1.2 Hardware and Software 21

• Input devices
• Output devices

Let’s take a closer look at each of these components.

The cpU
When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is the
part of a computer that actually runs programs. The CPU is the most important component
in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical com-
ponents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two
women in the photo are working with the historic ENIAC computer. The ENIAC, which
is considered by many to be the world’s first programmable electronic computer, was built
in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine, which was
primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab
technician holding a modern microprocessor. In addition to being much smaller than the old
electromechanical CPUs in early computers, microprocessors are also much more powerful.

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

Figure 1-2 Typical components of a computer system

M01_GADD5502_03_GE_C01.indd Page 21 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

22 Chapter 1 Introduction to Computers and Programming

Figure 1-3 The ENIAC computer (courtesy of U.S. Army Historic Computer Images)

Figure 1-4 A lab technician holds a modern microprocessor (Creativa/Shutterstock)

M01_GADD5502_03_GE_C01.indd Page 22 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

 1.2 Hardware and Software 23

Main Memory
You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called
this because the CPU is able to quickly access data stored at any random location in
RAM. RAM is usually a volatile type of memory that is used only for temporary stor-
age while a program is running. When the computer is turned off, the contents of RAM
are erased. Inside your computer, RAM is stored in chips, similar to the ones shown in
Figure 1-5.

Figure 1-5 Memory chips (Garsya/Shutterstock)

secondary storage Devices
Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word pro-
cessing documents, payroll data, and inventory records, is saved to secondary storage
as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onto a spinning circular disk. Solid-state
drives, which store data in solid-state memory, are increasingly becoming popular. A solid-
state drive has no moving parts and operates faster than a traditional disk drive. Most
computers have some sort of secondary storage device, either a traditional disk drive or a
solid-state drive, mounted inside their case. External storage devices, which connect to one
of the computer’s communication ports, are also available. External storage devices can be
used to create backup copies of important data or to move data to another computer.

In addition to external storage devices, many types of devices have been created for
copying data and for moving it to other computers. For many years floppy disk drives
were popular. A floppy disk drive records data onto a small floppy disk, which can be
removed from the drive. Floppy disks have many disadvantages, however. They hold
only a small amount of data, are slow to access data, and can be unreliable. Floppy
disk drives are rarely used today, in favor of superior devices such as USB drives. USB
drives are small devices that plug into the computer’s USB (universal serial bus) port and

M01_GADD5502_03_GE_C01.indd Page 23 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

24 Chapter 1 Introduction to Computers and Programming

appear to the system as a disk drive. These drives do not actually contain a disk, how-
ever. They store data in a special type of memory known as flash memory. USB drives,
which are also known as memory sticks and flash drives, are inexpensive, reliable, and
small enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are
also popular for data storage. Data is not recorded magnetically on an optical disc, but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and because
recordable CD and DVD drives are now commonplace, they are good mediums for creating
backup copies of data.

Input Devices
Input is any data the computer collects from people and from other devices. The component
that collects the data and sends it to the computer is called an input device. Common input
devices are the keyboard, mouse, scanner, microphone, and digital camera. Disk drives and
optical drives can also be considered input devices because programs and data are retrieved
from them and loaded into the computer’s memory.

output Devices
Output is any data the computer produces for people or for other devices. It might be a
sales report, a list of names, or a graphic image. The data is sent to an output device, which
formats and presents it. Common output devices are video displays and printers. Disk
drives and CD recorders can also be considered output devices because the system sends
data to them in order to be saved.

software
If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two categories.
Let’s take a closer look at each.

system software
The programs that control and manage the basic operations of a computer are generally
referred to as system software. System software typically includes the following types of
programs:

 Operating Systems An operating system is the most fundamental set of programs on
a computer. The operating system controls the internal operations of the computer’s
hardware, manages all of the devices connected to the computer, allows data to be saved
to and retrieved from storage devices, and allows other programs to run on the computer.
Popular operating systems for laptop and desktop computers include Windows, Mac OS,
and Linux. Popular operating systems for mobile devices include Android and iOS.

M01_GADD5502_03_GE_C01.indd Page 24 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

 1.3 How Computers Store Data 25

 Utility Programs A utility program performs a specialized task that enhances the com-
puter’s operation or safeguards data. Examples of utility programs are virus scanners,
file compression programs, and data backup programs.

 Software Development Tools Software development tools are the programs that pro-
grammers use to create, modify, and test software. Assemblers, compilers, and interpret-
ers are examples of programs that fall into this category.

Application software
Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two com-
monly used applications: Microsoft Word, a word processing program, and PowerPoint, a
presentation program. Some other examples of application software are spreadsheet pro-
grams, email programs, web browsers, and game programs.

checkpoint

1.1 What is a program?

1.2 What is hardware?

1.3 List the five major components of a computer system.

1.4 What part of the computer actually runs programs?

1.5 What part of the computer serves as a work area to store a program and its data
while the program is running?

1.6 What part of the computer holds data for long periods of time, even when there is
no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other devices?

1.9 What fundamental set of programs control the internal operations of the
computer’s hardware?

1.10 What do you call a program that performs a specialized task, such as a virus
scanner, a file compression program, or a data backup program?

1.11 Word processing programs, spreadsheet programs, email programs, web browsers,
and game programs belong to what category of software?

1.3 How computers store Data

concepT: All data that is stored in a computer is converted to sequences of 0s
and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is
only enough memory to store a letter of the alphabet or a small number. In order to do
anything meaningful, a computer has to have lots of bytes. Most computers today have
millions, or even billions, of bytes of memory.

M01_GADD5502_03_GE_C01.indd Page 25 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

26 Chapter 1 Introduction to Computers and Programming

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren’t actual “switches,” however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position, and a negative charge as a switch in the off position. Figure 1-6 shows the way
that a computer scientist might think of a byte of memory: as a collection of switches that
are each flipped to either the on or off position.

OFF

ON

OFF OFFOFF

ON ON ON

Figure 1-6 Think of a byte as eight switches

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off pattern
that represents the data. For example, the pattern on the left in Figure 1-7 shows how the
number 77 would be stored in a byte, and the pattern on the right shows how the letter A
would be stored in a byte. We explain below how these patterns are determined.

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

Figure 1-7 Bit patterns for the number 77 and the letter A

storing numbers
A bit can be used in a very limited way to represent numbers. Depending on whether the bit
is turned on or off, it can represent one of two different values. In computer systems, a bit
that is turned off represents the number 0 and a bit that is turned on represents the number
1. This corresponds perfectly to the binary numbering system. In the binary numbering
system (or binary, as it is usually called) all numeric values are written as sequences of 0s
and 1s. Here is an example of a number that is written in binary:

10011101

M01_GADD5502_03_GE_C01.indd Page 26 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

 1.3 How Computers Store Data 27

The position of each digit in a binary number has a value assigned to it. Starting with the
rightmost digit and moving left, the position values are 20, 21, 22, 23, and so forth, as shown
in Figure 1-8. Figure 1-9 shows the same diagram with the position values calculated.
Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8, and so
forth.

1 0 0 1 1 1 0 1
20

21

22

23

24

25

26

27

Figure 1-8 The values of binary digits as powers of 2

To determine the value of a binary number you simply add up the position values of all the
1s. For example, in the binary number 10011101, the position values of the 1s are 1, 4, 8,
16, and 128. This is shown in Figure 1-10. The sum of all of these position values is 157.
So, the value of the binary number 10011101 is 157.

1 0 0 1 1 1 0 1
 1
 2
 4
 8
 16
 32
 64
128

Figure 1-9 The values of binary digits

1 0 0 1 1 1 0 1
1

4
8
16

128

1 + 4 + 8 + 16 + 128 = 157

Figure 1-10 Determining the value of 10011101

M01_GADD5502_03_GE_C01.indd Page 27 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

28 Chapter 1 Introduction to Computers and Programming

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory. Each
1 is represented by a bit in the on position, and each 0 is represented by a bit in the off
position.

128 + 16 + 8 + 4 + 1 = 157

1

128 64 32 16 8 4 2 1
Position
values

1

0

11 1 1

0 0

Figure 1-11 The bit pattern for 157

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When
all of the bits in a byte are set to 1 (turned on), then the byte holds the largest value that
can be stored in it. The largest value that can be stored in a byte is 1 1 2 1 4 1 8 1 16 1
32 1 64 1 128 5 255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more than
one byte. For example, suppose we put two bytes together. That gives us 16 bits. The posi-
tion values of those 16 bits would be 20, 21, 22, 23, and so forth, up through 215. As shown
in Figure 1-12, the maximum value that can be stored in two bytes is 65,535. If you need
to store a number larger than this, then more bytes are necessary.

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768
Position
values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1-12 Two bytes used for a large number

TIp: In case you’re feeling overwhelmed by all this, relax! You will not have to actu-
ally convert numbers to binary while programming. Knowing that this process is taking
place inside the computer will help you as you learn, and in the long term this knowl-
edge will make you a better programmer.

M01_GADD5502_03_GE_C01.indd Page 28 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

 1.3 How Computers Store Data 29

storing characters
Any piece of data that is stored in a computer’s memory must be stored as a binary num-
ber. That includes characters, such as letters and punctuation marks. When a character is
stored in memory, it is first converted to a numeric code. The numeric code is then stored
in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASCII,
which stands for the American Standard Code for Information Interchange. ASCII is a set
of 128 numeric codes that represent the English letters, various punctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 65 is stored in memory (as a
binary number, of course). This is shown in Figure 1-13.

65A
00

1

0

1

0 0 0

Figure 1-13 The letter A is stored in memory as the number 65

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and so
forth. Appendix C shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s and was eventually adopted by
most all computer manufacturers. ASCII is limited, however, because it defines codes for
only 128 characters. To remedy this, the Unicode character set was developed in the early
1990s. Unicode is an extensive encoding scheme that is compatible with ASCII, but can
also represent characters for many of the languages in the world. Today, Unicode is quickly
becoming the standard character set used in the computer industry.

Advanced number storage
Earlier you read about numbers and how they are stored in memory. While reading that
section, perhaps it occurred to you that the binary numbering system can be used to repre-
sent only integer numbers, beginning with 0. Negative numbers and real numbers (such as
3.14159) cannot be represented using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do so
they use encoding schemes along with the binary numbering system. Negative numbers are
encoded using a technique known as two’s complement, and real numbers are encoded in
floating-point notation. You don’t need to know how these encoding schemes work, only
that they are used to convert negative numbers and real numbers to binary format.

TIp: The acronym ASCII is pronounced “askee.”

M01_GADD5502_03_GE_C01.indd Page 29 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

30 Chapter 1 Introduction to Computers and Programming

other Types of Data
Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital data is data that is stored in binary, and a digital
device is any device that works with binary data. In this section we have discussed how
numbers and characters are stored in binary, but computers also work with many other
types of digital data.

For example, consider the pictures that you take with your digital camera. These images
are composed of tiny dots of color known as pixels. (The term pixel stands for picture
element.) As shown in Figure 1-14, each pixel in an image is converted to a numeric code
that represents the pixel’s color. The numeric code is stored in memory as a binary number.

10010101110100010101101

Figure 1-14 A digital image is stored in binary format

The music that you play on your CD player, iPod, or MP3 player is also digital. A digital
song is broken into small pieces known as samples. Each sample is converted to a binary
number, which can be stored in memory. The more samples that a song is divided into, the
more it sounds like the original music when it is played back. A CD quality song is divided
into more than 44,000 samples per second!

checkpoint

1.12 What amount of memory is enough to store a letter of the alphabet or a small
number?

1.13 What do you call a tiny “switch” that can be set to either on or off?

1.14 In what numbering system are all numeric values written as sequences of 0s and 1s?

1.15 What is the purpose of ASCII?

1.16 What encoding scheme is extensive enough to represent the characters of many of
the languages in the world?

1.17 What do the terms “digital data” and “digital device” mean?

1.4 How a program Works

concepT: A computer’s CPU can only understand instructions that are written in
machine language. Because people find it very difficult to write entire
programs in machine language, other programming languages have been
invented.

M01_GADD5502_03_GE_C01.indd Page 30 30/07/14 7:55 PM user /203/PH01490_GE/9781292065502_GADDIS/GADDIS_STARTING_OUT_WITH_PYTHON_GLOBAL_EDITI ...

